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1  Scope of the Chapter

This chapter provides functions for the solution of systems of simultaneous linear equations, and associated
computations. It provides functions for

— matrix factorizations;
— solution of linear equations;
— estimating matrix condition numbers;
— computing error bounds for the solution of linear equations;
— matrix inversion.
Functions are provided for both real and complex data.

For a general introduction to the solution of systems of linear equations, you should turn first to the f04
Chapter Introduction. The decision trees, at the end of the f04 Chapter Introduction, direct you to the most
appropriate functions in Chapters f04 or f07 for solving your particular problem. In particular, Chapters
f04 and f07 contain Black Box (or driver) functions which enable some standard types of problem to be
solved by a call to a single function. Where possible, functions in Chapter f04 call Chapter f07 functions
to perform the necessary computational tasks.

There are two types of driver functions in this chapter: simple drivers which just return the solution to the
linear equations; and expert drivers which also return condition and error estimates and, in many cases,
also allow equilibration. The simple drivers for real matrices have names of the form FO7_AF (D__SV)
and for complex matrices have names of the form FO7_NF (Z__SV). The expert drivers for real matrices
have names of the form FO7 BF (D__SVX) and for complex matrices have names of the form FO7 PF
(Z__SVX).

The functions in this chapter (f07) handle only dense and band matrices (not matrices with more
specialized structures, or general sparse matrices).

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of systems of linear equations. Consult a
standard textbook, for example Golub and Van Loan (1996) for a more thorough discussion.

2.1 Notation
We use the standard notation for a system of simultaneous linear equations:
Ax=1b (1)

where A is the coefficient matrix, b is the right-hand side, and x is the solution. A is assumed to be a
square matrix of order .

If there are several right-hand sides, we write
AX =B (2)

where the columns of B are the individual right-hand sides, and the columns of X are the corresponding
solutions.

We also use the following notation, both here and in the function documents:

X a computed solution to Ax = b, (which usually differs from the exact solution x
because of round-off error)
r=>b—Ax the residual corresponding to the computed solution X
||x|| ., = max |x;] the oo-norm of the vector x
1
=N |y the 1-norm of the vector
bl =30 x
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4|l = max %:|a,j| the co-norm of the matrix A4
4], = m;ix 27:1 |aij| the 1-norm of the matrix A4

x| the vector with elements |x;|
4] the matrix with elements ‘aij

Inequalities of the form |4| < |B| are interpreted component-wise, that is |a;| < |b| for all ;.

2.2 Matrix Factorizations

If A is upper or lower triangular, Ax = b can be solved by a straightforward process of backward or
forward substitution.

Otherwise, the solution is obtained after first factorizing A, as follows.
General matrices (LU factorization with partial pivoting)
A=PLU

where P is a permutation matrix, L is lower-triangular with diagonal elements equal to 1, and U is upper-
triangular; the permutation matrix P (which represents row interchanges) is needed to ensure numerical
stability.

Symmetric positive-definite matrices (Cholesky factorization)
A=U"U or A=LL"
where U is upper triangular and L is lower triangular.
Symmetric indefinite matrices (Bunch—Kaufman factorization)
A=PUDU'P" or A4=PLDL'P"

where P is a permutation matrix, U is upper triangular, L is lower triangular, and D is a block diagonal
matrix with diagonal blocks of order 1 or 2; U and L have diagonal elements equal to 1, and have 2 by 2
unit matrices on the diagonal corresponding to the 2 by 2 blocks of D. The permutation matrix P (which
represents symmetric row-and-column interchanges) and the 2 by 2 blocks in D are needed to ensure
numerical stability. If 4 is in fact positive-definite, no interchanges are needed and the factorization

reduces to 4 = UDU" or 4 = LDL" with diagonal D, which is simply a variant form of the Cholesky
factorization.

2.3 Solution of Systems of Equations

Given one of the above matrix factorizations, it is straightforward to compute a solution to 4x = b by
solving two subproblems, as shown below, first for y and then for x. Each subproblem consists essentially
of solving a triangular system of equations by forward or backward substitution; the permutation matrix P
and the block diagonal matrix D introduce only a little extra complication:

General matrices (LU factorization)
Ly=P"b
Ux=y
Symmetric positive-definite matrices (Cholesky factorization)
T — =
Uy=b or L)T/ b
Ux = y L x= y
Symmetric indefinite matrices (Bunch—Kaufman factorization)

PUDy=b PLDy=b
UTP'x=y L'P'x=y
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2.4 Sensitivity and Error Analysis
2.4.1 Normwise error bounds

Frequently, in practical problems the data 4 and b are not known exactly, and it is then important to
understand how uncertainties or perturbations in the data can affect the solution.

If x is the exact solution to Ax =b, and x+ 6x is the exact solution to a perturbed problem
(A+ 64)(x + 6x) = (b + 6b), then

] (0 100

< + - - - (2nd-order terms)
[l 4]l ||b||>

where x(A4) is the condition number of A defined by
a(A4) = ]l [l47"]| (3)

In other words, relative errors in 4 or b may be amplified in x by a factor x(4). Section 2.4.2 discusses
how to compute or estimate x(4).

Similar considerations apply when we study the effects of rounding errors introduced by computation in
finite precision. The effects of rounding errors can be shown to be equivalent to perturbations in the

04 1)) .
H||A||H and ||||b|||_| are usually at most p(n)e, where € is the machine precision and

p(n) is an increasing function of n which is seldom larger than 10n (although in theory it can be as large as
2}171).

In other words, the computed solution x is the exact solution of a linear system (4 + 64)x = b + 6b which
is close to the original system in a normwise sense.

original data, such that

2.4.2 Estimating condition numbers

The previous section has emphasised the usefulness of the quantity x(4) in understanding the sensitivity of
the solution of Ax = b. To compute the value of x(4) from equation (3) is more expensive than solving
Ax = b in the first place. Hence it is standard practice to estimate k(A), in either the 1-norm or the oo-
norm, by a method which only requires O(nz) additional operations, assuming that a suitable factorization
of A is available.

The method used in this chapter is Higham’s modification of Hager’s method (see Higham (1988)). It
yields an estimate which is never larger than the true value, but which seldom falls short by more than a
factor of 3 (although artificial examples can be constructed where it is much smaller). This is acceptable
since it is the order of magnitude of x(4) which is important rather than its precise value.

Because x(A4) is infinite if 4 is singular, the functions in this chapter actually return the reciprocal of (A4).

2.4.3 Componentwise error bounds

A disadvantage of normwise error bounds is that they do not reflect any special structure in the data 4 and
b — that is, a pattern of elements which are known to be zero — and the bounds are dominated by the
largest elements in the data.

Componentwise error bounds overcome these limitations. Instead of the normwise relative error, we can
bound the relative error in each component of A and b:

max |6aij|,M <w
ik |aii ||

where the component-wise backward error bound w is given by

|7
w=max————————.
i (JA][%] =+ 161]);

Functions are provided in this chapter which compute w, and also compute a forward error bound which is
sometimes much sharper than the normwise bound given earlier:
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[ = A

S

Care is taken when computing this bound to allow for rounding errors in computing ». The norm
H’Af1 ’|r|”OO is estimated cheaply (without computing Ail) by a modification of the method used to
estimate x(4).

2.4.4 Iterative refinement of the solution

If X is an approximate computed solution to Ax = b, and r is the corresponding residual, then a procedure
for iterative refinement of x can be defined as follows, starting with x, = X:

for i=0,1,..., until convergence

compute r; =b — Ax;
solve Ad; =r;
compute x| =X; +d;

In Chapter 104, functions are provided which perform this procedure using additional precision to compute
r, and are thus able to reduce the forward error to the level of machine precision.

The functions in this chapter do not use additional precision to compute r, and cannot guarantee a small
forward error, but can guarantee a small backward error (except in rare cases when A is very ill-
conditioned, or when 4 and x are sparse in such a way that |4].|x| has a zero or very small component).
The iterations continue until the backward error has been reduced as much as possible; usually only one
iteration is needed, and at most five iterations are allowed.

2.5 Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve

Ax = b by first computing 4~ and then forming the matrix-vector product x = 4~ 'b; the procedure
described in Section 2.3 is more efficient and more accurate.

However, functions are provided for the rare occasions when an inverse is needed, using one of the
factorizations described in Section 2.2.

2.6 Packed Storage

Functions which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If the upper or lower triangle is stored
conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of the
array can be used to store other useful data. However, that is not always convenient, and if it is important
to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of length
n(n+ 1)/2; in other words, the storage is almost halved.

This storage format is referred to as packed storage, it is described in Section 3.3.2. It may also be used
for triangular matrices.

Functions designed for packed storage perform the same number of arithmetic operations as functions
which use conventional storage, but they are usually less efficient, especially on high-performance
computers, so there is then a trade-off between storage and efficiency.

2.7 Band and Tridiagonal Matrices

A band matrix is one whose non-zero elements are confined to a relatively small number of subdiagonals
or superdiagonals on either side of the main diagonal. A #ridiagonal matrix is a special case of a band
matrix with just one subdiagonal and one superdiagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme used for band matrices is described
in Section 3.3.3.
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The LU factorization for general matrices, and the Cholesky factorization for symmetric and Hermitian
positive-definite matrices both preserve bandedness. Hence functions are provided which take advantage
of the band structure when solving systems of linear equations.

The Cholesky factorization preserves bandedness in a very precise sense: the factor U or L has the same
number of superdiagonals or subdiagonals as the original matrix. In the LU factorization, the row-
interchanges modify the band structure: if 4 has k; subdiagonals and k, superdiagonals, then L is not a
band matrix but still has at most k; non-zero elements below the diagonal in each column; and U has at
most k; + k, superdiagonals.

The Bunch—Kaufman factorization does not preserve bandedness, because of the need for symmetric row-
and-column permutations; hence no functions are provided for symmetric indefinite band matrices.

The inverse of a band matrix does not in general have a band structure, so no functions are provided for
computing inverses of band matrices.

2.8 Block Partitioned Algorithms

Many of the functions in this chapter use what is termed a block partitioned algorithm. This means that at
each major step of the algorithm a block of rows or columns is updated, and most of the computation is
performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed by
calls to the Level 3 BLAS (see Chapter f16), which are the key to achieving high performance on many
modern computers. See Golub and Van Loan (1996) or Anderson et al. (1999) for more about block
partitioned algorithms.

The performance of a block partitioned algorithm varies to some extent with the blocksize — that is, the
number of rows or columns per block. This is a machine-dependent argument, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be aware
of what value is being used. Different block sizes may be used for different functions. Values in the range
16 to 64 are typical.

On some machines there may be no advantage from using a block partitioned algorithm, and then the
functions use an unblocked algorithm (effectively a blocksize of 1), relying solely on calls to the Level 2
BLAS (see Chapter f16 again).

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

Tables 1 and 2 in Section 3.5 show the functions which are provided for performing different computations
on different types of matrices. Table 1 shows functions for real matrices; Table 2 shows functions for
complex matrices. Each entry in the table gives the NAG function name and the LAPACK double
precision name (see Section 3.2).

Functions are provided for the following types of matrix:
general
general band
symmetric or Hermitian positive-definite
symmetric or Hermitian positive-definite (packed storage)
symmetric or Hermitian positive-definite band
symmetric or Hermitian positive-definite tridiagonal
symmetric or Hermitian indefinite
symmetric or Hermitian indefinite (packed storage)
triangular

triangular (packed storage)
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triangular band
tridiagonal

For each of the above types of matrix (except where indicated), functions are provided to perform the
following computations:

(a) solve a system of linear equations (driver functions);

(b) solve a system of linear equations with condition and error estimation (expert drivers);
(c) (except for triangular matrices) factorize the matrix (see Section 2.2);

(d) solve a system of linear equations, using the factorization (see Section 2.3);

(e) estimate the condition number of the matrix, using the factorization (see Section 2.4.2); these
functions also require the norm of the original matrix (except when the matrix is triangular) which
may be computed by a function in Chapter f16;

(f) refine the solution and compute forward and backward error bounds (see Sections 2.4.3 and 2.4.4);
these functions require the original matrix and right-hand side, as well as the factorization returned
from (a) and the solution returned from (b);

(g) (except for band and tridiagonal matrices) invert the matrix, using the factorization (see Section 2.5).

Thus, to solve a particular problem, it is usually only necessary to call a single driver function, but
alternatively two or more functions may be called in succession. This is illustrated in the example
programs in the function documents.

3.2 NAG Names and LAPACK Names

As well as the NAG function name (beginning f07-), Tables 1 and 2 show the LAPACK function names in
double precision.

The functions may be called either by their NAG short names or by their NAG long names. The NAG
long names for a function is simply the LAPACK name (in lower case) prepended by nag , for example,
nag_dpotrf is the long name for f07fdc.

References to Chapter f07 functions in the manual normally include the LAPACK double precision names,
for example, nag_dgetrf (f07adc).

The LAPACK function names follow a simple scheme (which is similar to that used for the BLAS in
Chapter f16). FEach name has the structure XYYZZZ, where the components have the following
meanings:

— the initial letter X indicates the data type (real or complex) and precision:
S — real, single precision
D - real, double precision
C — complex, single precision
Z — complex, double precision
— the 2nd and 3rd letters YY indicate the type of the matrix 4 (and in some cases its storage scheme):
GE — general
GB — general band
PO — symmetric or Hermitian positive-definite
PP — symmetric or Hermitian positive-definite (packed storage)
PB — symmetric or Hermitian positive-definite band
SY — symmetric indefinite
SP — symmetric indefinite (packed storage)

HE — (complex) Hermitian indefinite
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HP — (complex) Hermitian indefinite (packed storage)
GT — general tridiagonal
PT — symmetric or Hermitian positive-definite tridiagonal
TR — triangular
TP — triangular (packed storage)
TB — triangular band
— the last 3 letters ZZZ indicate the computation performed:
TRF — triangular factorization
TRS — solution of linear equations, using the factorization
CON - estimate condition number
RFS — refine solution and compute error bounds
TRI — compute inverse, using the factorization

Thus the function SGETRF performs a triangular factorization of a real general matrix in a single precision
implementation; the corresponding function in a double precision implementation is DGETRF.

3.3 Matrix Storage Schemes

In this chapter the following different storage schemes are used for matrices:
— conventional storage;
— packed storage for symmetric, Hermitian or triangular matrices;
— band storage for band matrices.

These storage schemes are compatible with those used in Chapter f16 (especially in the BLAS) and
Chapter {08, but different schemes for packed or band storage are used in a few older functions in
Chapters 101, 02, {03 and {04.

In the examples below, * indicates an array element which need not be set and is not referenced by the
functions. The examples illustrate only the relevant part of the arrays; array arguments may of course have
additional rows or columns, according to the usual rules for passing array arguments in Fortran 77.

3.3.1 Conventional storage

Matrices may be stored column-wise or row-wise as described in Section 2.2.1.4 of the Essential
Introduction: a matrix 4 is stored in a one-dimensional array a, with matrix element a;; stored column-wise
in array element a[(j — 1) x pda + i — 1] or row-wise in array element a[(i — 1) x pda +; — 1] where pda
is the principle dimension of the array (i.e., the stride separating row or column elements of the matrix
respectively). Most functions in this chapter contain the order argument which can be set to
Nag ColMajor for column-wise storage or Nag_RowMajor for row-wise storage of matrices. Where
groups of functions are intended to be used together, the value of the order argument passed must be
consistent throughout.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * in the examples below.
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For example, when n = 3:

order uplo Triangular matrix A4 Storage in array a
Nag_c()lMaj()r Nag_Uppel‘ an aj;p dpz ap * *ajpan * a13a)3a33
Ay Ay
as3
Nag_ROWMajor Nag_Uppel‘ an a;p dps a;1apagz * ayydyz * xdzz
Ay A3
as;
Nag ColMajor | Nag Lower ap a11021A3] * Aprd3n * *d33
a dp
azy 4z dsg
Nag RowMajor | Nag Lower ap aj * *dy Ay * dz31032033
ay; dax;
azy A4z ds3

Functions which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set.

For example, when n = 3:

order uplo Hermitian matrix 4 Storage in array a

Nag_ColMajor | Nag Upper ap; ap  aps aqq * *A1p0ay) * d13ar3033
dip axp axp
aiz dyz ds3

Nag_RowMajor | Nag Upper ap;; ap  ags a1a12a13 * Axdys * *dsz3
dip axp axp
aiz dyz ds3

Nag_ColMajor Nag_LOWer apy ZZZI ZI31 ap1an1asy * Axdzy * *dzz

ax dxp dxp
azy 4z dsg

Nag_ROWMajOI' Nag_LOWer ap lel ZI3] ajp * *dp1ayr * Az1A3033
ay a4y
aszy 4z dsg

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle (again
as specified by uplo) is packed by columns or rows in a one-dimensional array. In Chapters f07 and 08,
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arrays which hold matrices in packed storage have names ending in P. The storage of matrix elements a;
in the packed array ap is as follows:

if uplo = Nag_Upper then

if order = Nag_ColMajor, a; is stored in ap[(i — 1) +(j — 1)/2] for i <j;
if order = Nag_RowMajor, a; is stored in ap[(j — 1) + (2n —i)(i — 1)/2] for i <.

if uplo = Nag_Lower then

if order = Nag_ColMajor, a; is stored in ap[(i — 1) + (2n —j)(j — 1)/2] for j < i
if order = Nag_RowMajor, a; is stored in ap[(j — 1) +i(i — 1)/2] for j < i.

For example:

order uplo Triangle of matrix {lir A} | Packed storage in array ap
Nag ColMajor | Nag Upper ayy ap ap aj| appdy a13a33033
N N———
dy 4z
asz
Nag RowMajor | Nag Upper ayy ap ap aj1a2a13 axdys ass
—
dy 4z
as3
Nag ColMajor | Nag Lower ap aj|ay daz) axds; asz
e — N
a1 a4
daszp dsy  dsz
Nag RowMajor | Nag Lower an ajpy dx1d; 431432033
——— ———
ar axp
aszy dspy  dsz

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Band storage

A band matrix with k; subdiagonals and k, superdiagonals may be stored compactly in a notional two-
dimensional array with k; + k£, + 1 rows and n columns if stored column-wise or n rows and k; + k, + 1
columns if stored row-wise. In column-major order, elements of a column of the matrix are stored
contiguously in the array, and elements of the diagonals of the matrix are stored with constant stride (i.e.,
in a row of the two-dimensional array). In row-major order, elements of a row of the matrix are stored
contiguously in the array, and elements of a diagonal of the matrix are stored with constant stride (i.e., in a
column of the two-dimensional array). These storage schemes should only be used in practice if k&,
k, < n, although the functions in Chapters f07 and f08 work correctly for all values of k; and k,. In
Chapters f07 and f08 arrays which hold matrices in band storage have names ending in 5.

To be precise, elements of matrix elements a; are stored as follows:

if order = Nag_ColMajor, a; is stored in ab[(j — 1) x pdab + k, +i — j];
if order = Nag_RowMajor, a; is stored in ab[(i — 1) x pdab + k; +; — i,

where pdab >k, +k,+1 is the stride Dbetween diagonal elements and  where
max(1,i —k;) <j < min(n,i+k,).

For example, when n =5, k; =2 and k, = 1:
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Band matrix 4 Band storage in array ab

order = Nag_ColMajor | order = Nag RowMajor

ap  dp * aip dyz dzg  Ays * app dp
ayy dpy 43 app 4y dzz Q44 dss * ary dyy 43
az; dzy d3z3 Q34 ay axp ag asy ¥ az; dsp 433 A3y
Qgp A4z dgq Q45 asy; azp asy * * Agp A4z dygq Q45

as3  ds4  dss asy asy ass *

The elements marked * in the upper left and lower right corners of the array ab need not be set, and are
not referenced by the functions. In this example, if order = Nag_ColMajor and pdab takes the minimum
value of 4, then ab[0] need not be set, ab[1] = a;;,ab[2] = ayy,...,ab[17] = ass. On the other hand, if
order = Nag_RowMajor (pdab =4), then ab[0] and ab[l] need not be set,
ab[Z] =da, ab[3] =dji,... ,ab[18] = ds;.

Note: when a general band matrix is supplied for LU factorization, space must be allowed to store an
additional k; superdiagonals, generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with k; + &, superdiagonals; it also means that the
principal dimension has the constraint pdab > 2k, + k, + 1.

Triangular band matrices are stored in the same format, with either k; = 0 if upper triangular, or £, = 0 if
lower triangular.

For symmetric or Hermitian band matrices with & subdiagonals or superdiagonals, only the upper or lower
triangle (as specified by uplo) need be stored:

if uplo = Nag_Upper then

if order = Nag_ColMajor, a; is stored in ab[(j — 1) x pdab + k + i —j];
if order = Nag_RowMajor, a; is stored in ab[(i — 1) x pdab + j —i].

for max(1,j — k) <i<j;
if uplo = Nag_Lower then

if order = Nag_ColMajor, a; is stored in ab[(j — 1) x pdab + i — j;
if order = Nag_RowMajor, a; is stored in ab[(i — 1) x pdab + k +j — i].

for j <i < min(n,j + k),
where pdab > k + 1 is the stride separating diagonal matrix elements in the array ab.

For example, when n =5 and k = 2:

uplo Hermitian band matrix A Band storage in array ab
order = Nag ColMajor | order = Nag RowMajor
* *
Nag_Upper app ap apg apz  dy  ass ap dp apg
= *
Ay Ay dyz A4 Ay dpz Q34 Qus Qayy dyz A4
a;z dyz Azz dzq  Ass ay Ay Az a4 dss a3z 34 Azs
= = *
dr4 d34 Qa4 dgs Q44  dgs
e e k *
azs  Qgs  dss dss
o e k k
Nag_Lower app  ax Az ayp Ay dzz Qa4 dss ap
= = *
dpy Ay A4z dAg dp) A3y Q43 dsy az; a4
= = * *
azy dzy dzz 443 ds3 as; dgy  ds3 azy dazy azz
Qgp Q43 Qa4 Asy4 gy 43 dyg
sz  ds4  dss as3  ds4  dss
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Note that different storage schemes for band matrices are used by some functions in Chapters f01, 02, {03
and f04. In the above example, if order = Nag_ColMajor and pdab = 3, then for uplo = Nag_Upper,
ab[2] = a,;,ab[4] = ay,,...,ab[14] = ass; while for uplo = Nag_Lower,
abl0] = ay;,ab[l] = ayy,...,ab[12] = as;s. If order = Nag RowMajor (pdab =3), then for
uplo = Nag_Upper, ab[0] = a;,ab[l] = ay,,...,ab[12] = ass; while for uplo = Nag_Lower,
ab[Z] = a“,ab[4] = djl,. .. 721':)[14] = ds;.

3.3.4 Unit triangular matrices

Some functions in this chapter have an option to handle unit triangular matrices (that is, triangular matrices
with diagonal elements = 1). This option is specified by an argument diag. If diag = Nag_UnitDiag
(Unit triangular), the diagonal elements of the matrix need not be stored, and the corresponding array
elements are not referenced by the functions. The storage scheme for the rest of the matrix (whether
conventional, packed or band) remains unchanged.

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real. In addition,
complex triangular matrices which arise in Cholesky factorization are defined by the algorithm to have real
diagonal elements.

If such matrices are supplied as input to functions in this chapter, the imaginary parts of the diagonal
elements are not referenced, but are assumed to be zero. If such matrices are returned as output by the
functions, the computed imaginary parts are explicitly set to zero.

3.4 Argument Conventions
3.4.1 Option arguments

In addition to the order argument of type Nag OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

f07fdc(Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, m in nag dgetrf (f07adc), n or nrhs in
nag_dgetrs (f07aec)) to be passed as zero, in which case the computation (or part of it) is skipped.
Negative dimensions are regarded as an error.

3.5 Tables of Available Computational Functions

It should be noted that all the LAPACK computational functions from Release 3 are included in the NAG
C Library and can be called by their LAPACK name*, although not all of these functions are currently
documented in Chapters f07 and f08.
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Each entry gives:

the NAG function short name
the LAPACK function name from which the NAG function long name is derived by prepending

nag .
Type of matrix and storage factorize solve condition error invert
scheme number estimate
general nag_dgetrf nag_dgetrs nag_dgecon nag_dgerfs nag_dgetri
(f07adc) (f07aec) (f07agc) (f07ahc) (f07ajc)
general band nag_dgbtrf nag_dgbtrs nag_dgbcon nag_dgbrfs
(f07bdc) (f07bec) (f07bgc) (f07bhc)
symmetric positive-definite nag_dpotrf nag_dpotrs nag_dpocon nag_dporfs nag_dpotri
(fo7fdc) (fo7fec) (fo7fge) (f07thc) (fo7fjc)
symmetric positive-definite nag_dpptrf nag_dpptrs nag_dppcon nag_dpprfs nag_dpptri
(packed storage) (f07gdc) (f07gec) (f07gge) (f07ghc) (f07gje)
symmetric positive-definite nag_dpbtrf nag_dpbtrs nag_dpbcon nag_dpbrfs
band (f07hdc) (f07hec) (f07hgc) (f07hhc)
symmetric indefinite nag_dsytrf nag_dsytrs nag_dsycon nag_dsyrfs nag_dsytri
(f07mdc) (f07mec) (f07mgc) (f07mhc) (f07mjc)
symmetric indefinite (packed nag_dsptrf nag_dsptrs nag_dspcon nag_dsprfs nag_dsptri
storage) (f07pdc) (f07pec) (f07pgc) (f07phc) (f07pjc)
triangular nag_dtrtrs nag_dtrcon nag_dtrrfs nag_dtrtri
(f07tec) (f07tge) (f07thc) (f07tjc)
triangular (packed storage) nag_dtptrs nag_dtpcon nag_dtprfs nag_dtptri
(f07uec) (f07ugc) (f07uhc) (f07ujc)
triangular band nag_dtbtrs nag_dtbcon nag_dtbrfs
(f07vec) (f07vgc) (f07vhc)

Each entry gives:

the NAG function short name

the LAPACK function name from which the NAG function long name is derived by prepending

nag_.
Type of matrix and storage factorize solve condition error invert
scheme number estimate
general nag_zgetrf nag_zgetrs nag_zgecon nag_zgerfs nag_zgetri
(f07arc) (f07asc) (f07auc) (f07avc) (f07awc)
general band nag_zgbtrf nag_zgbtrs nag_zgbcon nag_zgbrfs
(fo7brc) (f07bsc) (fo7buc) (f07bvc)
Hermitian positive-definite nag_zpotrf nag_zpotrs nag_zpocon nag_zporfs nag_zpotri
(f07frc) (f07fsc) (fo7fuc) (fo7fve) (fo7fwce)
Hermitian positive-definite nag_zpptrf nag_zpptrs nag_zppcon nag_zpprfs nag_zpptri
(packed storage) (f07grc) (f07gsc) (f07guc) (f07gvc) (f07gwc)
Hermitian positive-definite nag_zpbtrf nag_zpbtrs nag_zpbcon nag_zpbrfs
band (f07hrc) (f07hsc) (f07huc) (f07hvc)
Hermitian indefinite nag_zhetrf nag_zhetrs nag_zhecon nag_zherfs nag_zhetri
(f07mrc) (f07msc) (f07muc) (f07mvc) (f07mwc)
symmetric indefinite nag_zsytrf nag_zsytrs nag_zsycon nag_zsyrfs nag_zsytri
(f07nrc) (f07nsc) (f07nuc) (f07nvc) (f07nwc)
Hermitian indefinite (packed nag_zhptrf nag_zhptrs nag_zhpcon nag_zhprfs nag_zhptri
storage) (f07prc) (f07psc) (f07puc) (f07pvc) (f07pwc)
symmetric indefinite (packed nag_zsptrf nag_zsptrs nag_zspcon nag_zsprfs nag_zsptri
storage) (f07qrc) (f07qsc) (f07quc) (f07qvc) (fo7qwec)
triangular nag_ztrtrs nag_ztrcon nag_ztrrfs nag_ztrtri
(f07tsc) (f07tuc) (f07tve) (f07twc)
triangular (packed storage) nag_ztptrs nag_ztpcon nag_ztprfs nag_ztptri
(f07usc) (f07uuc) (f07uvc) (f07uwc)
triangular band nag_ztbtrs nag_ztbcon nag_ztbrfs
(f07vsc) (f07vuc) (f07vvc)
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4

Apply iterative refinement to the solution and compute error estimates:
after factorizing the matrix of coefficients:
complex band matrix
complex Hermitian indefinite matrix
complex Hermitian indefinite matrix, packed storage
complex Hermitian positive-definite band matrix
complex Hermitian positive-definite matrix
complex Hermitian positive-definite matrix, packed storage
complex matrix
complex symmetric indefinite matrix
complex symmetric indefinite matrix, packed storage
real band matrix
real matrix
real symmetric indefinite matrix
real symmetric indefinite matrix, packed storage
real symmetric positive-definite band matrix
real symmetric positive-definite matrix
real symmetric positive-definite matrix, packed storage
Compute error estimates:
complex triangular band matrix
complex triangular matrix
complex triangular matrix, packed storage
real triangular band matrix
real triangular matrix
real triangular matrix, packed storage
Condition number estimation:
after factorizing the matrix of coefficients:
complex band matrix
complex Hermitian indefinite matrix
complex Hermitian indefinite matrix, packed storage
complex Hermitian positive-definite band matrix
complex Hermitian positive-definite matrix
complex Hermitian positive-definite matrix, packed storage
complex matrix
complex symmetric indefinite matrix
complex symmetric indefinite matrix, packed storage
real band matrix
real matrix
real symmetric indefinite matrix
real symmetric indefinite matrix, packed storage
real symmetric positive-definite band matrix
real symmetric positive-definite matrix
real symmetric positive-definite matrix, packed storage
complex triangular band matrix
complex triangular matrix
complex triangular matrix, packed storage
real triangular band matrix
real triangular matrix
real triangular matrix, packed storage
LL" or UTU factorization:
complex Hermitian positive-definite band matrix
complex Hermitian positive-definite matrix
complex Hermitian positive-definite matrix, packed storage
real symmetric positive-definite band matrix
real symmetric positive-definite matrix
real symmetric positive-definite matrix, packed storage

Index
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nag_zgbrfs (£07bvc)
nag_zherfs (£07mvc)
nag_zhprfs (£07pvc)
nag_zpbrfs (£07hvc)
nag_zporfs (£07fvc)
nag_zpprfs (£07gvc)
nag_zgerfs (f07avc)
nag_zsyrfs (£07nvc)
nag_zsprfs (£07qvc)
nag_dgbrfs (£07bhc)
nag_dgerfs (£07ahc)
nag_dsyrfs (£07mhc)
nag_dsprfs (£07phc)
nag_dpbrfs (£07hhc)
nag_dporfs (£07fhc)
nag_dpprfs (£07ghc)

nag_ztbrfs (£07vvc)
nag_ztrrfs (£07tvc)
nag_ztprfs (£07uvc)
nag_dtbrfs (£07vhc)
nag_dtrrfs (£07thc)
nag_dtprfs (£07uhc)

nag_zgbcon (£07buc)
nag_zhecon (£07muc)
nag_zhpcon (£07puc)
nag_zpbcon (£07huc)
nag_zpocon (£f07fuc)
nag_zppcon (£07guc)
nag_zgecon (f07auc)
nag_zsycon (£07nuc)
nag_zspcon (£07quc)
nag_dgbcon (£07bgc)
nag_dgecon (£07agc)
nag_dsycon (£07mgc)
nag_dspcon (£07pgc)
nag_dpbcon (£f07hgc)
nag_dpocon (£07fgc)
nag_dppcon (£f07ggc)
nag_ztbcon (£07vuc)
nag_ztrcon (£07tuc)
nag_ztpcon (£07uuc)
nag_dtbcon (£07vgc)
nag_dtrcon (£f07tgc)
nag_dtpcon (£f07ugc)

nag_zpbtrf (£f07hrc)
nag_zpotrf (£07frc)
nag_zpptrf (£07grc)
nag_dpbtrf (£07hdc)
nag_dpotrf (£07fdc)
nag_dpptrf (£07gdc)
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LU factorization:

compleX Dand MALTIX ....ceevieeierieie ettt

(o7000] o) 1o 112 11 4 0 OSSR

real band MATIX ..ooccoiviiiiiiniiereeceeee e

TEAL MNALTIX  .eieiiieiieeieeiie ettt et e et et e et e et e e teeesbeesaaeessaessaesnseessaeenseessseanseenasenn

Matrix inversion:

after factorizing the matrix of coefficients:
complex Hermitian indefinite MatrixX .........ccccoocevvienieiienieneeieie e
complex Hermitian indefinite matrix, packed storage ...........cccccceeevvennnnnne.
complex Hermitian positive-definite matrixX ..........ccccoeveereiierierieniierieeieene
complex Hermitian positive-definite matrix, packed storage .......................
COMPIEX MALITX .eevvievieiieiietiertieteeteeteetesteseeenseetesseeseessesssenseessessesssesesssesseenes
complex symmetric indefinite MAatriX .......ccocceeveerierierienienieeierieeeeneeie e
complex symmetric indefinite matrix, packed storage ..........ccccceeveeveeneene.
1AL MALIIX  couiiiiiiiiiiiiieeceeetccec ettt ettt er e s st saesaesaeeaeeae
real symmetric INdefinite MALriX .......cccvevevieriieeiiierie et
real symmetric indefinite matrix, packed StOrage ...........ccooveevvervevieeeenieeneene.
real symmetric positive-definite MatrixX .........cccceccevviereeiienieenieniee e
real symmetric positive-definite matrix, packed storage .........c.cccevenne

complex triangular MALIIX .......cccccvieveiierieiiiierienie et e e ereesaeesteesbeeseeseeenseenes

complex triangular matrix, packed StOrage ...........ccccocoveriiiiiienienie e

real triangUIAr MALIIX .....ccvevvieeieiieeieeiesie et ete et steete st e steeaesteeteeseesseesesaeesnesseens

real triangular matrix, packed StOrage .........c.ccoveevieiieriesienieiieeee e

PLDL"P" or PUDU"P" factorization:
complex Hermitian indefinite MatrixX ........ccccooveeveecieniecienienieee e
complex Hermitian indefinite matrix, packed storage ..........cccccoeverveceenncnne.
complex symmetric indefinite MatriX ........ccccooveeveriierierienierie e
complex symmetric indefinite matrix, packed storage ............ccccceeeriieviennenne
real symmetric indefinite MALIIX .......cecerreeriiriieriieriinieneetee e
real symmetric indefinite matrix, packed StOrage ...........cccovveeeivvieviieciesieeciennnns
Solution of simultaneous linear equations:
after factorizing the matrix of coefficients:
complexX band MALIIX ......cceeevieiiiiirieeiiesieste et sre e e ereesraeeereesseees
complex Hermitian indefinite matriX ..........ccccoovvieviieerienciienieeie e
complex Hermitian indefinite matrix, packed storage ..........cccccocceevvevirenne.
complex Hermitian positive-definite band matrixX .........cceceeveriiecienienieennene.
complex Hermitian positive-definite matriX .........ccocceevereiereeiienienieneeieeeene
complex Hermitian positive-definite matrix, packed storage ........c..c.coco.....
COMPIEX MALIIX .eviiiiierieiiieitie et esiee et e st e sbeeteesbeeareesseessseesseessseesseessessseesns
complex symmetric indefinite MAatriX ........ccccevevrieririienienenieieneeneeee e
complex symmetric indefinite matrix, packed storage ..........ccccceevvevieeneene.
real band MALIIX  ...oocoveiiiiiiieieeee st
TEAL MALIIX  ceiitiiiiiiiiiiieeeeet ettt ettt ettt st b st beebesbesbeeaea
real symmetric iNdefinite MALrIX .......ccceevivieriierciierieecieeie et eee e ens
real symmetric indefinite matrix, packed Storage .........ccceocevvevieieneeneneene
real symmetric positive-definite band matriX ..........cccceeveeviiecieeiieniecieneeeen,
real symmetric positive-definite MatrixX .........cccceccveviereecieniieneeieieneeee e
real symmetric positive-definite matrix, packed storage ...........ccccoevevieenene.
complex triangular band MAatriX .........ccccooveieiiieiiierie e
complex triangular MAIIX .....occeeeiriiiiiiieneee et
complex triangular matrix, packed StOrage .........ccccceeeriievieciecienieneeeeene
real triangular band MAtrIX .......cceecveiieriiecieiieieie et ees
real trianGUIAr MALITX ..c.oovervieeieeieeie ettt e eeesteeteseeesteeaeseeennesseens
real triangular matrix, packed StOTage .........ccccevvieviiriierieiieiieiieee e

5 Functions Withdrawn or Scheduled for Withdrawal

None.
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nag_zgbtrf (£07brc)
nag_zgetrf (f07arc)
nag_dgbtrf (£07bdc)
nag_dgetrf (£f07adc)

nag_zhetri (£07mwc)
nag_zhptri (£07pwc)
nag_zpotri (£07fwc)
nag_zpptri (£07gwc)
nag_zgetri (f07awc)
nag_zsytri (£07nwc)
nag_zsptri (£07qwc)
nag_dgetri (£07ajc)
nag_dsytri (£07mjc)
nag_dsptri (£07pjc)
nag_dpotri (£07fjc)
nag_dpptri (£07gjc)
nag_ztrtri (£07twc)
nag_ztptri (£07uwc)
nag_dtrtri (£07tjc)
nag_dtptri (£07ujc)

nag_zhetrf (£07mrc)
nag_zhptrf (£07prc)
nag_zsytrf (£07nrc)
nag_zsptrf (£07qrc)
nag_dsytrf (£07mdc)
nag_dsptrf (£07pdc)

nag_zgbtrs (£07bsc)
nag_zhetrs (£07msc)
nag_zhptrs (£07psc)
nag_zpbtrs (£f07hsc)
nag_zpotrs (£f07fsc)
nag_zpptrs (£07gsc)
nag_zgetrs (f07asc)
nag_zsytrs (£07nsc)
nag_zsptrs (£07qgsc)
nag_dgbtrs (£f07bec)
nag_dgetrs (f07aec)
nag_dsytrs (£07mec)
nag_dsptrs (£07pec)
nag_dpbtrs (£f07hec)
nag_dpotrs (f07fec)
nag_dpptrs (£f07gec)
nag_ztbtrs (£07vsc)
nag_ztrtrs (£07tsc)
nag_ztptrs (£07usc)
nag_dtbtrs (f07vec)
nag_dtrtrs (£f07tec)
nag_dtptrs (£f07uec)
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