
NAG C Library Chapter Introduction

f07 – Linear Equations (LAPACK)

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

2.1 Notation . 2

2.2 Matrix Factorizations . 3

2.3 Solution of Systems of Equations . 3

2.4 Sensitivity and Error Analysis . 4

2.4.1 Normwise error bounds . 4
2.4.2 Estimating condition numbers . 4
2.4.3 Componentwise error bounds . 4
2.4.4 Iterative refinement of the solution . 5

2.5 Matrix Inversion . 5

2.6 Packed Storage . 5

2.7 Band and Tridiagonal Matrices . 5

2.8 Block Partitioned Algorithms . 6

3 Recommendations on Choice and Use of Available Functions 6

3.1 Available Functions . 6

3.2 NAG Names and LAPACK Names . 7

3.3 Matrix Storage Schemes . 8

3.3.1 Conventional storage . 8
3.3.2 Packed storage . 9
3.3.3 Band storage . 10
3.3.4 Unit triangular matrices . 12
3.3.5 Real diagonal elements of complex matrices . 12

3.4 Argument Conventions . 12

3.4.1 Option arguments . 12
3.4.2 Problem dimensions . 12

3.5 Tables of Available Computational Functions . 12

4 Index . 14

5 Functions Withdrawn or Scheduled for Withdrawal 15

6 References . 16

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3660/8] f07.1

1 Scope of the Chapter

This chapter provides functions for the solution of systems of simultaneous linear equations, and associated
computations. It provides functions for

– matrix factorizations;

– solution of linear equations;

– estimating matrix condition numbers;

– computing error bounds for the solution of linear equations;

– matrix inversion.

Functions are provided for both real and complex data.

For a general introduction to the solution of systems of linear equations, you should turn first to the f04
Chapter Introduction. The decision trees, at the end of the f04 Chapter Introduction, direct you to the most
appropriate functions in Chapters f04 or f07 for solving your particular problem. In particular, Chapters
f04 and f07 contain Black Box (or driver) functions which enable some standard types of problem to be
solved by a call to a single function. Where possible, functions in Chapter f04 call Chapter f07 functions
to perform the necessary computational tasks.

There are two types of driver functions in this chapter: simple drivers which just return the solution to the
linear equations; and expert drivers which also return condition and error estimates and, in many cases,
also allow equilibration. The simple drivers for real matrices have names of the form F07_AF (D__SV)
and for complex matrices have names of the form F07_NF (Z__SV). The expert drivers for real matrices
have names of the form F07_BF (D__SVX) and for complex matrices have names of the form F07_PF
(Z__SVX).

The functions in this chapter (f07) handle only dense and band matrices (not matrices with more
specialized structures, or general sparse matrices).

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of systems of linear equations. Consult a
standard textbook, for example Golub and Van Loan (1996) for a more thorough discussion.

2.1 Notation

We use the standard notation for a system of simultaneous linear equations:

Ax ¼ b ð1Þ
where A is the coefficient matrix, b is the right-hand side, and x is the solution. A is assumed to be a
square matrix of order n.

If there are several right-hand sides, we write

AX ¼ B ð2Þ
where the columns of B are the individual right-hand sides, and the columns of X are the corresponding
solutions.

We also use the following notation, both here and in the function documents:

x̂ a computed solution to Ax ¼ b, (which usually differs from the exact solution x
because of round-off error)

r ¼ b� Ax̂ the residual corresponding to the computed solution x̂
xk k1 ¼ max

i
xij j the 1-norm of the vector x

xk k1 ¼
Xn

j¼1
xj
�� �� the 1-norm of the vector x

Introduction – f07 NAG C Library Manual

f07.2 [NP3660/8]

Ak k1 ¼ max
i

P
j
aij
�� �� the 1-norm of the matrix A

Ak k1 ¼ max
j

Xn

i¼1
aij
�� �� the 1-norm of the matrix A

xj j the vector with elements xij j
Aj j the matrix with elements aij

�� ��
Inequalities of the form Aj j � Bj j are interpreted component-wise, that is aij

�� �� � bij
�� �� for all i; j.

2.2 Matrix Factorizations

If A is upper or lower triangular, Ax ¼ b can be solved by a straightforward process of backward or
forward substitution.

Otherwise, the solution is obtained after first factorizing A, as follows.

General matrices (LU factorization with partial pivoting)

A ¼ PLU

where P is a permutation matrix, L is lower-triangular with diagonal elements equal to 1, and U is upper-
triangular; the permutation matrix P (which represents row interchanges) is needed to ensure numerical
stability.

Symmetric positive-definite matrices (Cholesky factorization)

A ¼ UTU or A ¼ LLT

where U is upper triangular and L is lower triangular.

Symmetric indefinite matrices (Bunch–Kaufman factorization)

A ¼ PUDUTPT or A ¼ PLDLTPT

where P is a permutation matrix, U is upper triangular, L is lower triangular, and D is a block diagonal
matrix with diagonal blocks of order 1 or 2; U and L have diagonal elements equal to 1, and have 2 by 2
unit matrices on the diagonal corresponding to the 2 by 2 blocks of D. The permutation matrix P (which
represents symmetric row-and-column interchanges) and the 2 by 2 blocks in D are needed to ensure
numerical stability. If A is in fact positive-definite, no interchanges are needed and the factorization

reduces to A ¼ UDUT or A ¼ LDLT with diagonal D, which is simply a variant form of the Cholesky
factorization.

2.3 Solution of Systems of Equations

Given one of the above matrix factorizations, it is straightforward to compute a solution to Ax ¼ b by
solving two subproblems, as shown below, first for y and then for x. Each subproblem consists essentially
of solving a triangular system of equations by forward or backward substitution; the permutation matrix P
and the block diagonal matrix D introduce only a little extra complication:

General matrices (LU factorization)

Ly ¼ PTb
Ux ¼ y

Symmetric positive-definite matrices (Cholesky factorization)

UTy ¼ b
Ux ¼ y

or
Ly ¼ b
LTx ¼ y

Symmetric indefinite matrices (Bunch–Kaufman factorization)

PUDy ¼ b
UTPTx ¼ y

or
PLDy ¼ b
LTPTx ¼ y

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3660/8] f07.3

2.4 Sensitivity and Error Analysis

2.4.1 Normwise error bounds

Frequently, in practical problems the data A and b are not known exactly, and it is then important to
understand how uncertainties or perturbations in the data can affect the solution.

If x is the exact solution to Ax ¼ b, and xþ �x is the exact solution to a perturbed problem
Aþ �Að Þ xþ �xð Þ ¼ bþ �bð Þ, then

�xk k
xk k � � Að Þ �Ak k

Ak k þ �bk k
bk k

� �
þ � � � 2nd-order termsð Þ

where � Að Þ is the condition number of A defined by

� Að Þ ¼ Ak k: A�1
�� ��. ð3Þ

In other words, relative errors in A or b may be amplified in x by a factor � Að Þ. Section 2.4.2 discusses
how to compute or estimate � Að Þ.
Similar considerations apply when we study the effects of rounding errors introduced by computation in
finite precision. The effects of rounding errors can be shown to be equivalent to perturbations in the

original data, such that
�Ak k
Ak k and

�bk k
bk k are usually at most p nð Þ�, where � is the machine precision and

p nð Þ is an increasing function of n which is seldom larger than 10n (although in theory it can be as large as

2n�1).

In other words, the computed solution x̂ is the exact solution of a linear system Aþ �Að Þx̂ ¼ bþ �b which
is close to the original system in a normwise sense.

2.4.2 Estimating condition numbers

The previous section has emphasised the usefulness of the quantity � Að Þ in understanding the sensitivity of
the solution of Ax ¼ b. To compute the value of � Að Þ from equation (3) is more expensive than solving
Ax ¼ b in the first place. Hence it is standard practice to estimate � Að Þ, in either the 1-norm or the 1-

norm, by a method which only requires O n2
� �

additional operations, assuming that a suitable factorization
of A is available.

The method used in this chapter is Higham’s modification of Hager’s method (see Higham (1988)). It
yields an estimate which is never larger than the true value, but which seldom falls short by more than a
factor of 3 (although artificial examples can be constructed where it is much smaller). This is acceptable
since it is the order of magnitude of � Að Þ which is important rather than its precise value.

Because � Að Þ is infinite if A is singular, the functions in this chapter actually return the reciprocal of � Að Þ.

2.4.3 Componentwise error bounds

A disadvantage of normwise error bounds is that they do not reflect any special structure in the data A and
b – that is, a pattern of elements which are known to be zero – and the bounds are dominated by the
largest elements in the data.

Componentwise error bounds overcome these limitations. Instead of the normwise relative error, we can
bound the relative error in each component of A and b:

max
ijk

�aij
�� ��
aij
�� �� ; �bkj j

bkj j

 !
� !

where the component-wise backward error bound ! is given by

! ¼ max
i

rij j
Aj j: x̂j j þ bj jð Þi

.

Functions are provided in this chapter which compute !, and also compute a forward error bound which is
sometimes much sharper than the normwise bound given earlier:

Introduction – f07 NAG C Library Manual

f07.4 [NP3660/8]

x� x̂k k1
xk k1

�
A�1
�� ��: rj j�� ��

1
xk k1

.

Care is taken when computing this bound to allow for rounding errors in computing r. The norm

A�1
�� ��: rj j�� ��

1 is estimated cheaply (without computing A�1) by a modification of the method used to
estimate � Að Þ.

2.4.4 Iterative refinement of the solution

If x̂ is an approximate computed solution to Ax ¼ b, and r is the corresponding residual, then a procedure
for iterative refinement of x̂ can be defined as follows, starting with x0 ¼ x̂:

for i ¼ 0; 1; . . . , until convergence

compute ri ¼ b� Axi
solve Adi ¼ ri
compute xiþ1 ¼ xi þ di

In Chapter f04, functions are provided which perform this procedure using additional precision to compute
r, and are thus able to reduce the forward error to the level of machine precision.

The functions in this chapter do not use additional precision to compute r, and cannot guarantee a small
forward error, but can guarantee a small backward error (except in rare cases when A is very ill-
conditioned, or when A and x are sparse in such a way that Aj j: xj j has a zero or very small component).
The iterations continue until the backward error has been reduced as much as possible; usually only one
iteration is needed, and at most five iterations are allowed.

2.5 Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve

Ax ¼ b by first computing A�1 and then forming the matrix-vector product x ¼ A�1b; the procedure
described in Section 2.3 is more efficient and more accurate.

However, functions are provided for the rare occasions when an inverse is needed, using one of the
factorizations described in Section 2.2.

2.6 Packed Storage

Functions which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If the upper or lower triangle is stored
conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of the
array can be used to store other useful data. However, that is not always convenient, and if it is important
to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of length
n nþ 1ð Þ=2; in other words, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.2. It may also be used
for triangular matrices.

Functions designed for packed storage perform the same number of arithmetic operations as functions
which use conventional storage, but they are usually less efficient, especially on high-performance
computers, so there is then a trade-off between storage and efficiency.

2.7 Band and Tridiagonal Matrices

A band matrix is one whose non-zero elements are confined to a relatively small number of subdiagonals
or superdiagonals on either side of the main diagonal. A tridiagonal matrix is a special case of a band
matrix with just one subdiagonal and one superdiagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme used for band matrices is described
in Section 3.3.3.

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3660/8] f07.5

The LU factorization for general matrices, and the Cholesky factorization for symmetric and Hermitian
positive-definite matrices both preserve bandedness. Hence functions are provided which take advantage
of the band structure when solving systems of linear equations.

The Cholesky factorization preserves bandedness in a very precise sense: the factor U or L has the same
number of superdiagonals or subdiagonals as the original matrix. In the LU factorization, the row-
interchanges modify the band structure: if A has kl subdiagonals and ku superdiagonals, then L is not a
band matrix but still has at most kl non-zero elements below the diagonal in each column; and U has at
most kl þ ku superdiagonals.

The Bunch–Kaufman factorization does not preserve bandedness, because of the need for symmetric row-
and-column permutations; hence no functions are provided for symmetric indefinite band matrices.

The inverse of a band matrix does not in general have a band structure, so no functions are provided for
computing inverses of band matrices.

2.8 Block Partitioned Algorithms

Many of the functions in this chapter use what is termed a block partitioned algorithm. This means that at
each major step of the algorithm a block of rows or columns is updated, and most of the computation is
performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed by
calls to the Level 3 BLAS (see Chapter f16), which are the key to achieving high performance on many
modern computers. See Golub and Van Loan (1996) or Anderson et al. (1999) for more about block
partitioned algorithms.

The performance of a block partitioned algorithm varies to some extent with the blocksize – that is, the
number of rows or columns per block. This is a machine-dependent argument, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be aware
of what value is being used. Different block sizes may be used for different functions. Values in the range
16 to 64 are typical.

On some machines there may be no advantage from using a block partitioned algorithm, and then the
functions use an unblocked algorithm (effectively a blocksize of 1), relying solely on calls to the Level 2
BLAS (see Chapter f16 again).

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

Tables 1 and 2 in Section 3.5 show the functions which are provided for performing different computations
on different types of matrices. Table 1 shows functions for real matrices; Table 2 shows functions for
complex matrices. Each entry in the table gives the NAG function name and the LAPACK double
precision name (see Section 3.2).

Functions are provided for the following types of matrix:

general

general band

symmetric or Hermitian positive-definite

symmetric or Hermitian positive-definite (packed storage)

symmetric or Hermitian positive-definite band

symmetric or Hermitian positive-definite tridiagonal

symmetric or Hermitian indefinite

symmetric or Hermitian indefinite (packed storage)

triangular

triangular (packed storage)

Introduction – f07 NAG C Library Manual

f07.6 [NP3660/8]

triangular band

tridiagonal

For each of the above types of matrix (except where indicated), functions are provided to perform the
following computations:

(a) solve a system of linear equations (driver functions);

(b) solve a system of linear equations with condition and error estimation (expert drivers);

(c) (except for triangular matrices) factorize the matrix (see Section 2.2);

(d) solve a system of linear equations, using the factorization (see Section 2.3);

(e) estimate the condition number of the matrix, using the factorization (see Section 2.4.2); these
functions also require the norm of the original matrix (except when the matrix is triangular) which
may be computed by a function in Chapter f16;

(f) refine the solution and compute forward and backward error bounds (see Sections 2.4.3 and 2.4.4);
these functions require the original matrix and right-hand side, as well as the factorization returned
from (a) and the solution returned from (b);

(g) (except for band and tridiagonal matrices) invert the matrix, using the factorization (see Section 2.5).

Thus, to solve a particular problem, it is usually only necessary to call a single driver function, but
alternatively two or more functions may be called in succession. This is illustrated in the example
programs in the function documents.

3.2 NAG Names and LAPACK Names

As well as the NAG function name (beginning f07-), Tables 1 and 2 show the LAPACK function names in
double precision.

The functions may be called either by their NAG short names or by their NAG long names. The NAG
long names for a function is simply the LAPACK name (in lower case) prepended by nag_, for example,
nag_dpotrf is the long name for f07fdc.

References to Chapter f07 functions in the manual normally include the LAPACK double precision names,
for example, nag_dgetrf (f07adc).

The LAPACK function names follow a simple scheme (which is similar to that used for the BLAS in
Chapter f16). Each name has the structure XYYZZZ, where the components have the following
meanings:

– the initial letter X indicates the data type (real or complex) and precision:

S – real, single precision

D – real, double precision

C – complex, single precision

Z – complex, double precision

– the 2nd and 3rd letters YY indicate the type of the matrix A (and in some cases its storage scheme):

GE – general

GB – general band

PO – symmetric or Hermitian positive-definite

PP – symmetric or Hermitian positive-definite (packed storage)

PB – symmetric or Hermitian positive-definite band

SY – symmetric indefinite

SP – symmetric indefinite (packed storage)

HE – (complex) Hermitian indefinite

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3660/8] f07.7

HP – (complex) Hermitian indefinite (packed storage)

GT – general tridiagonal

PT – symmetric or Hermitian positive-definite tridiagonal

TR – triangular

TP – triangular (packed storage)

TB – triangular band

– the last 3 letters ZZZ indicate the computation performed:

TRF – triangular factorization

TRS – solution of linear equations, using the factorization

CON – estimate condition number

RFS – refine solution and compute error bounds

TRI – compute inverse, using the factorization

Thus the function SGETRF performs a triangular factorization of a real general matrix in a single precision
implementation; the corresponding function in a double precision implementation is DGETRF.

3.3 Matrix Storage Schemes

In this chapter the following different storage schemes are used for matrices:

– conventional storage;

– packed storage for symmetric, Hermitian or triangular matrices;

– band storage for band matrices.

These storage schemes are compatible with those used in Chapter f16 (especially in the BLAS) and
Chapter f08, but different schemes for packed or band storage are used in a few older functions in
Chapters f01, f02, f03 and f04.

In the examples below, � indicates an array element which need not be set and is not referenced by the
functions. The examples illustrate only the relevant part of the arrays; array arguments may of course have
additional rows or columns, according to the usual rules for passing array arguments in Fortran 77.

3.3.1 Conventional storage

Matrices may be stored column-wise or row-wise as described in Section 2.2.1.4 of the Essential
Introduction: a matrix A is stored in a one-dimensional array a, with matrix element ai;j stored column-wise
in array element a½ j� 1ð Þ � pdaþ i� 1� or row-wise in array element a½ i� 1ð Þ � pdaþ j� 1� where pda
is the principle dimension of the array (i.e., the stride separating row or column elements of the matrix
respectively). Most functions in this chapter contain the order argument which can be set to
Nag_ColMajor for column-wise storage or Nag_RowMajor for row-wise storage of matrices. Where
groups of functions are intended to be used together, the value of the order argument passed must be
consistent throughout.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * in the examples below.

Introduction – f07 NAG C Library Manual

f07.8 [NP3660/8]

For example, when n ¼ 3:

order uplo Triangular matrix A Storage in array a

Nag_ColMajor Nag_Upper a11 a12 a13
a22 a23

a33

0
@

1
A a11 � �a12a22 � a13a23a33

Nag_RowMajor Nag_Upper a11 a12 a13
a22 a23

a33

0
@

1
A a11a12a13 � a22a23 � �a33

Nag_ColMajor Nag_Lower a11
a21 a22
a31 a32 a33

0
@

1
A a11a21a31 � a22a32 � �a33

Nag_RowMajor Nag_Lower a11
a21 a22
a31 a32 a33

0
@

1
A a11 � �a21a22 � a31a32a33

Functions which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set.

For example, when n ¼ 3:

order uplo Hermitian matrix A Storage in array a

Nag_ColMajor Nag_Upper a11 a12 a13
�a12 a22 a23
�a13 �a23 a33

0
@

1
A a11 � �a12a22 � a13a23a33

Nag_RowMajor Nag_Upper a11 a12 a13
�a12 a22 a23
�a13 �a23 a33

0
@

1
A a11a12a13 � a22a23 � �a33

Nag_ColMajor Nag_Lower a11 �a21 �a31
a21 a22 �a32
a31 a32 a33

0
@

1
A a11a21a31 � a22a32 � �a33

Nag_RowMajor Nag_Lower a11 �a21 �a31
a21 a22 �a32
a31 a32 a33

0
@

1
A a11 � �a21a22 � a31a32a33

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle (again
as specified by uplo) is packed by columns or rows in a one-dimensional array. In Chapters f07 and f08,

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3660/8] f07.9

arrays which hold matrices in packed storage have names ending in P. The storage of matrix elements aij
in the packed array ap is as follows:

if uplo ¼ Nag_Upper then

if order ¼ Nag_ColMajor, aij is stored in ap½ i� 1ð Þ þ j j� 1ð Þ=2� for i � j;
if order ¼ Nag_RowMajor, aij is stored in ap½ j� 1ð Þ þ 2n� ið Þ i� 1ð Þ=2� for i � j.

if uplo ¼ Nag_Lower then

if order ¼ Nag_ColMajor, aij is stored in ap½ i� 1ð Þ þ 2n� jð Þ j� 1ð Þ=2� for j � i;
if order ¼ Nag_RowMajor, aij is stored in ap½ j� 1ð Þ þ i i� 1ð Þ=2� for j � i.

For example:

order uplo Triangle of matrix {\it A} Packed storage in array ap

Nag_ColMajor Nag_Upper a11 a12 a13
a22 a23

a33

0
@

1
A a11 a12a22|fflffl{zfflffl} a13a23a33|fflfflfflfflffl{zfflfflfflfflffl}

Nag_RowMajor Nag_Upper a11 a12 a13
a22 a23

a33

0
@

1
A a11a12a13|fflfflfflfflffl{zfflfflfflfflffl} a22a23|fflffl{zfflffl} a33

Nag_ColMajor Nag_Lower a11
a21 a22
a31 a32 a33

0
@

1
A a11a21a31|fflfflfflfflffl{zfflfflfflfflffl} a22a32|fflffl{zfflffl} a33

Nag_RowMajor Nag_Lower a11
a21 a22
a31 a32 a33

0
@

1
A a11 a21a22|fflffl{zfflffl} a31a32a33|fflfflfflfflffl{zfflfflfflfflffl}

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Band storage

A band matrix with kl subdiagonals and ku superdiagonals may be stored compactly in a notional two-
dimensional array with kl þ ku þ 1 rows and n columns if stored column-wise or n rows and kl þ ku þ 1
columns if stored row-wise. In column-major order, elements of a column of the matrix are stored
contiguously in the array, and elements of the diagonals of the matrix are stored with constant stride (i.e.,
in a row of the two-dimensional array). In row-major order, elements of a row of the matrix are stored
contiguously in the array, and elements of a diagonal of the matrix are stored with constant stride (i.e., in a
column of the two-dimensional array). These storage schemes should only be used in practice if kl,
ku � n, although the functions in Chapters f07 and f08 work correctly for all values of kl and ku. In
Chapters f07 and f08 arrays which hold matrices in band storage have names ending in B.

To be precise, elements of matrix elements aij are stored as follows:

if order ¼ Nag_ColMajor, aij is stored in ab½ j� 1ð Þ � pdabþ ku þ i� j�;
if order ¼ Nag_RowMajor, aij is stored in ab½ i� 1ð Þ � pdabþ kl þ j� i�,

where pdab � kl þ ku þ 1 is the stride between diagonal elements and where
max 1; i� klð Þ � j � min n; iþ kuð Þ.
For example, when n ¼ 5, kl ¼ 2 and ku ¼ 1:

Introduction – f07 NAG C Library Manual

f07.10 [NP3660/8]

Band matrix A Band storage in array ab

order ¼ Nag_ColMajor order ¼ Nag_RowMajor

a11 a12
a21 a22 a23
a31 a32 a33 a34

a42 a43 a44 a45
a53 a54 a55

* a12 a23 a34 a45
a11 a22 a33 a44 a55
a21 a32 a43 a54 *
a31 a42 a53 * *

* * a11 a12
* a21 a22 a23
a31 a32 a33 a34
a42 a43 a44 a45
a53 a54 a55 *

The elements marked � in the upper left and lower right corners of the array ab need not be set, and are
not referenced by the functions. In this example, if order ¼ Nag_ColMajor and pdab takes the minimum
value of 4, then ab½0� need not be set, ab½1� ¼ a11; ab½2� ¼ a21; . . . ; ab½17� ¼ a55. On the other hand, if
order ¼ Nag_RowMajor (pdab ¼ 4), then ab½0� and ab½1� need not be set,
ab½2� ¼ a11; ab½3� ¼ a12; . . . ; ab½18� ¼ a55.

Note: when a general band matrix is supplied for LU factorization, space must be allowed to store an
additional kl superdiagonals, generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with kl þ ku superdiagonals; it also means that the
principal dimension has the constraint pdab � 2kl þ ku þ 1.

Triangular band matrices are stored in the same format, with either kl ¼ 0 if upper triangular, or ku ¼ 0 if
lower triangular.

For symmetric or Hermitian band matrices with k subdiagonals or superdiagonals, only the upper or lower
triangle (as specified by uplo) need be stored:

if uplo ¼ Nag_Upper then

if order ¼ Nag_ColMajor, aij is stored in ab½ j� 1ð Þ � pdabþ k þ i� j�;
if order ¼ Nag_RowMajor, aij is stored in ab½ i� 1ð Þ � pdabþ j� i�.

for max 1; j� kð Þ � i � j;

if uplo ¼ Nag_Lower then

if order ¼ Nag_ColMajor, aij is stored in ab½ j� 1ð Þ � pdabþ i� j�;
if order ¼ Nag_RowMajor, aij is stored in ab½ i� 1ð Þ � pdabþ k þ j� i�.

for j � i � min n; jþ kð Þ,
where pdab � k þ 1 is the stride separating diagonal matrix elements in the array ab.

For example, when n ¼ 5 and k ¼ 2:

uplo Hermitian band matrix A Band storage in array ab

order ¼ Nag_ColMajor order ¼ Nag_RowMajor

Nag_Upper a11 a12 a13
�a12 a22 a23 a24
�a13 �a23 a33 a34 a35

�a24 �a34 a44 a45
�a35 �a45 a55

0
BBBB@

1
CCCCA

* * a13 a24 a35
* a12 a23 a34 a45
a11 a22 a33 a44 a55

a11 a12 a13
a22 a23 a24
a33 a34 a35
a44 a45 *
a55 * *

Nag_Lower a11 �a21 �a31
a21 a22 �a32 �a42
a31 a32 a33 �a43 �a53

a42 a43 a44 �a54
a53 a54 a55

0
BBBB@

1
CCCCA

a11 a22 a33 a44 a55
a21 a32 a43 a54 *
a31 a42 a53 * *

* * a11
* a21 a22
a31 a32 a33
a42 a43 a44
a53 a54 a55

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3660/8] f07.11

Note that different storage schemes for band matrices are used by some functions in Chapters f01, f02, f03
and f04. In the above example, if order ¼ Nag_ColMajor and pdab ¼ 3, then for uplo ¼ Nag_Upper,
ab½2� ¼ a11; ab½4� ¼ a12; . . . ; ab½14� ¼ a55; while for uplo ¼ Nag_Lower,
ab½0� ¼ a11; ab½1� ¼ a21; . . . ; ab½12� ¼ a55. If order ¼ Nag_RowMajor (pdab ¼ 3), then for
uplo ¼ Nag_Upper, ab½0� ¼ a11; ab½1� ¼ a12; . . . ; ab½12� ¼ a55; while for uplo ¼ Nag_Lower,
ab½2� ¼ a11; ab½4� ¼ a21; . . . ; ab½14� ¼ a55.

3.3.4 Unit triangular matrices

Some functions in this chapter have an option to handle unit triangular matrices (that is, triangular matrices
with diagonal elements ¼ 1). This option is specified by an argument diag. If diag ¼ Nag_UnitDiag
(Unit triangular), the diagonal elements of the matrix need not be stored, and the corresponding array
elements are not referenced by the functions. The storage scheme for the rest of the matrix (whether
conventional, packed or band) remains unchanged.

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real. In addition,
complex triangular matrices which arise in Cholesky factorization are defined by the algorithm to have real
diagonal elements.

If such matrices are supplied as input to functions in this chapter, the imaginary parts of the diagonal
elements are not referenced, but are assumed to be zero. If such matrices are returned as output by the
functions, the computed imaginary parts are explicitly set to zero.

3.4 Argument Conventions

3.4.1 Option arguments

In addition to the order argument of type Nag_OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

f07fdc(Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, m in nag_dgetrf (f07adc), n or nrhs in
nag_dgetrs (f07aec)) to be passed as zero, in which case the computation (or part of it) is skipped.
Negative dimensions are regarded as an error.

3.5 Tables of Available Computational Functions

It should be noted that all the LAPACK computational functions from Release 3 are included in the NAG
C Library and can be called by their LAPACK name*, although not all of these functions are currently
documented in Chapters f07 and f08.

Introduction – f07 NAG C Library Manual

f07.12 [NP3660/8]

Each entry gives:

the NAG function short name
the LAPACK function name from which the NAG function long name is derived by prepending
nag_.

Type of matrix and storage
scheme

factorize solve condition
number

error
estimate

invert

general nag_dgetrf
(f07adc)

nag_dgetrs
(f07aec)

nag_dgecon
(f07agc)

nag_dgerfs
(f07ahc)

nag_dgetri
(f07ajc)

general band nag_dgbtrf
(f07bdc)

nag_dgbtrs
(f07bec)

nag_dgbcon
(f07bgc)

nag_dgbrfs
(f07bhc)

symmetric positive-definite nag_dpotrf
(f07fdc)

nag_dpotrs
(f07fec)

nag_dpocon
(f07fgc)

nag_dporfs
(f07fhc)

nag_dpotri
(f07fjc)

symmetric positive-definite
(packed storage)

nag_dpptrf
(f07gdc)

nag_dpptrs
(f07gec)

nag_dppcon
(f07ggc)

nag_dpprfs
(f07ghc)

nag_dpptri
(f07gjc)

symmetric positive-definite
band

nag_dpbtrf
(f07hdc)

nag_dpbtrs
(f07hec)

nag_dpbcon
(f07hgc)

nag_dpbrfs
(f07hhc)

symmetric indefinite nag_dsytrf
(f07mdc)

nag_dsytrs
(f07mec)

nag_dsycon
(f07mgc)

nag_dsyrfs
(f07mhc)

nag_dsytri
(f07mjc)

symmetric indefinite (packed
storage)

nag_dsptrf
(f07pdc)

nag_dsptrs
(f07pec)

nag_dspcon
(f07pgc)

nag_dsprfs
(f07phc)

nag_dsptri
(f07pjc)

triangular nag_dtrtrs
(f07tec)

nag_dtrcon
(f07tgc)

nag_dtrrfs
(f07thc)

nag_dtrtri
(f07tjc)

triangular (packed storage) nag_dtptrs
(f07uec)

nag_dtpcon
(f07ugc)

nag_dtprfs
(f07uhc)

nag_dtptri
(f07ujc)

triangular band nag_dtbtrs
(f07vec)

nag_dtbcon
(f07vgc)

nag_dtbrfs
(f07vhc)

Each entry gives:

the NAG function short name
the LAPACK function name from which the NAG function long name is derived by prepending
nag_.

Type of matrix and storage
scheme

factorize solve condition
number

error
estimate

invert

general nag_zgetrf
(f07arc)

nag_zgetrs
(f07asc)

nag_zgecon
(f07auc)

nag_zgerfs
(f07avc)

nag_zgetri
(f07awc)

general band nag_zgbtrf
(f07brc)

nag_zgbtrs
(f07bsc)

nag_zgbcon
(f07buc)

nag_zgbrfs
(f07bvc)

Hermitian positive-definite nag_zpotrf
(f07frc)

nag_zpotrs
(f07fsc)

nag_zpocon
(f07fuc)

nag_zporfs
(f07fvc)

nag_zpotri
(f07fwc)

Hermitian positive-definite
(packed storage)

nag_zpptrf
(f07grc)

nag_zpptrs
(f07gsc)

nag_zppcon
(f07guc)

nag_zpprfs
(f07gvc)

nag_zpptri
(f07gwc)

Hermitian positive-definite
band

nag_zpbtrf
(f07hrc)

nag_zpbtrs
(f07hsc)

nag_zpbcon
(f07huc)

nag_zpbrfs
(f07hvc)

Hermitian indefinite nag_zhetrf
(f07mrc)

nag_zhetrs
(f07msc)

nag_zhecon
(f07muc)

nag_zherfs
(f07mvc)

nag_zhetri
(f07mwc)

symmetric indefinite nag_zsytrf
(f07nrc)

nag_zsytrs
(f07nsc)

nag_zsycon
(f07nuc)

nag_zsyrfs
(f07nvc)

nag_zsytri
(f07nwc)

Hermitian indefinite (packed
storage)

nag_zhptrf
(f07prc)

nag_zhptrs
(f07psc)

nag_zhpcon
(f07puc)

nag_zhprfs
(f07pvc)

nag_zhptri
(f07pwc)

symmetric indefinite (packed
storage)

nag_zsptrf
(f07qrc)

nag_zsptrs
(f07qsc)

nag_zspcon
(f07quc)

nag_zsprfs
(f07qvc)

nag_zsptri
(f07qwc)

triangular nag_ztrtrs
(f07tsc)

nag_ztrcon
(f07tuc)

nag_ztrrfs
(f07tvc)

nag_ztrtri
(f07twc)

triangular (packed storage) nag_ztptrs
(f07usc)

nag_ztpcon
(f07uuc)

nag_ztprfs
(f07uvc)

nag_ztptri
(f07uwc)

triangular band nag_ztbtrs
(f07vsc)

nag_ztbcon
(f07vuc)

nag_ztbrfs
(f07vvc)

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3660/8] f07.13

4 Index

Apply iterative refinement to the solution and compute error estimates:
after factorizing the matrix of coefficients:

complex band matrix ... nag_zgbrfs (f07bvc)
complex Hermitian indefinite matrix .. nag_zherfs (f07mvc)
complex Hermitian indefinite matrix, packed storage nag_zhprfs (f07pvc)
complex Hermitian positive-definite band matrix .. nag_zpbrfs (f07hvc)
complex Hermitian positive-definite matrix ... nag_zporfs (f07fvc)
complex Hermitian positive-definite matrix, packed storage nag_zpprfs (f07gvc)
complex matrix .. nag_zgerfs (f07avc)
complex symmetric indefinite matrix .. nag_zsyrfs (f07nvc)
complex symmetric indefinite matrix, packed storage nag_zsprfs (f07qvc)
real band matrix ... nag_dgbrfs (f07bhc)
real matrix .. nag_dgerfs (f07ahc)
real symmetric indefinite matrix ... nag_dsyrfs (f07mhc)
real symmetric indefinite matrix, packed storage .. nag_dsprfs (f07phc)
real symmetric positive-definite band matrix .. nag_dpbrfs (f07hhc)
real symmetric positive-definite matrix ... nag_dporfs (f07fhc)
real symmetric positive-definite matrix, packed storage nag_dpprfs (f07ghc)

Compute error estimates:
complex triangular band matrix .. nag_ztbrfs (f07vvc)
complex triangular matrix ... nag_ztrrfs (f07tvc)
complex triangular matrix, packed storage .. nag_ztprfs (f07uvc)
real triangular band matrix ... nag_dtbrfs (f07vhc)
real triangular matrix .. nag_dtrrfs (f07thc)
real triangular matrix, packed storage ... nag_dtprfs (f07uhc)

Condition number estimation:
after factorizing the matrix of coefficients:

complex band matrix ... nag_zgbcon (f07buc)
complex Hermitian indefinite matrix .. nag_zhecon (f07muc)
complex Hermitian indefinite matrix, packed storage nag_zhpcon (f07puc)
complex Hermitian positive-definite band matrix .. nag_zpbcon (f07huc)
complex Hermitian positive-definite matrix ... nag_zpocon (f07fuc)
complex Hermitian positive-definite matrix, packed storage nag_zppcon (f07guc)
complex matrix .. nag_zgecon (f07auc)
complex symmetric indefinite matrix .. nag_zsycon (f07nuc)
complex symmetric indefinite matrix, packed storage nag_zspcon (f07quc)
real band matrix ... nag_dgbcon (f07bgc)
real matrix .. nag_dgecon (f07agc)
real symmetric indefinite matrix ... nag_dsycon (f07mgc)
real symmetric indefinite matrix, packed storage .. nag_dspcon (f07pgc)
real symmetric positive-definite band matrix .. nag_dpbcon (f07hgc)
real symmetric positive-definite matrix ... nag_dpocon (f07fgc)
real symmetric positive-definite matrix, packed storage nag_dppcon (f07ggc)

complex triangular band matrix .. nag_ztbcon (f07vuc)
complex triangular matrix ... nag_ztrcon (f07tuc)
complex triangular matrix, packed storage .. nag_ztpcon (f07uuc)
real triangular band matrix ... nag_dtbcon (f07vgc)
real triangular matrix .. nag_dtrcon (f07tgc)
real triangular matrix, packed storage ... nag_dtpcon (f07ugc)

LLT or UTU factorization:
complex Hermitian positive-definite band matrix ... nag_zpbtrf (f07hrc)
complex Hermitian positive-definite matrix .. nag_zpotrf (f07frc)
complex Hermitian positive-definite matrix, packed storage nag_zpptrf (f07grc)
real symmetric positive-definite band matrix ... nag_dpbtrf (f07hdc)
real symmetric positive-definite matrix .. nag_dpotrf (f07fdc)
real symmetric positive-definite matrix, packed storage nag_dpptrf (f07gdc)

Introduction – f07 NAG C Library Manual

f07.14 [NP3660/8]

LU factorization:
complex band matrix .. nag_zgbtrf (f07brc)
complex matrix ... nag_zgetrf (f07arc)
real band matrix .. nag_dgbtrf (f07bdc)
real matrix ... nag_dgetrf (f07adc)

Matrix inversion:
after factorizing the matrix of coefficients:

complex Hermitian indefinite matrix .. nag_zhetri (f07mwc)
complex Hermitian indefinite matrix, packed storage nag_zhptri (f07pwc)
complex Hermitian positive-definite matrix ... nag_zpotri (f07fwc)
complex Hermitian positive-definite matrix, packed storage nag_zpptri (f07gwc)
complex matrix .. nag_zgetri (f07awc)
complex symmetric indefinite matrix .. nag_zsytri (f07nwc)
complex symmetric indefinite matrix, packed storage nag_zsptri (f07qwc)
real matrix .. nag_dgetri (f07ajc)
real symmetric indefinite matrix ... nag_dsytri (f07mjc)
real symmetric indefinite matrix, packed storage .. nag_dsptri (f07pjc)
real symmetric positive-definite matrix ... nag_dpotri (f07fjc)
real symmetric positive-definite matrix, packed storage nag_dpptri (f07gjc)

complex triangular matrix ... nag_ztrtri (f07twc)
complex triangular matrix, packed storage .. nag_ztptri (f07uwc)
real triangular matrix .. nag_dtrtri (f07tjc)
real triangular matrix, packed storage ... nag_dtptri (f07ujc)

PLDLTPT or PUDUTPT factorization:
complex Hermitian indefinite matrix ... nag_zhetrf (f07mrc)
complex Hermitian indefinite matrix, packed storage nag_zhptrf (f07prc)
complex symmetric indefinite matrix ... nag_zsytrf (f07nrc)
complex symmetric indefinite matrix, packed storage nag_zsptrf (f07qrc)
real symmetric indefinite matrix .. nag_dsytrf (f07mdc)
real symmetric indefinite matrix, packed storage ... nag_dsptrf (f07pdc)

Solution of simultaneous linear equations:
after factorizing the matrix of coefficients:

complex band matrix ... nag_zgbtrs (f07bsc)
complex Hermitian indefinite matrix .. nag_zhetrs (f07msc)
complex Hermitian indefinite matrix, packed storage nag_zhptrs (f07psc)
complex Hermitian positive-definite band matrix .. nag_zpbtrs (f07hsc)
complex Hermitian positive-definite matrix ... nag_zpotrs (f07fsc)
complex Hermitian positive-definite matrix, packed storage nag_zpptrs (f07gsc)
complex matrix .. nag_zgetrs (f07asc)
complex symmetric indefinite matrix .. nag_zsytrs (f07nsc)
complex symmetric indefinite matrix, packed storage nag_zsptrs (f07qsc)
real band matrix ... nag_dgbtrs (f07bec)
real matrix .. nag_dgetrs (f07aec)
real symmetric indefinite matrix ... nag_dsytrs (f07mec)
real symmetric indefinite matrix, packed storage .. nag_dsptrs (f07pec)
real symmetric positive-definite band matrix .. nag_dpbtrs (f07hec)
real symmetric positive-definite matrix ... nag_dpotrs (f07fec)
real symmetric positive-definite matrix, packed storage nag_dpptrs (f07gec)

complex triangular band matrix .. nag_ztbtrs (f07vsc)
complex triangular matrix ... nag_ztrtrs (f07tsc)
complex triangular matrix, packed storage .. nag_ztptrs (f07usc)
real triangular band matrix ... nag_dtbtrs (f07vec)
real triangular matrix .. nag_dtrtrs (f07tec)
real triangular matrix, packed storage ... nag_dtptrs (f07uec)

5 Functions Withdrawn or Scheduled for Withdrawal

None.

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3660/8] f07.15

6 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Higham N J (1988) Algorithm 674: Fortran codes for estimating the one-norm of a real or complex matrix,
with applications to condition estimation ACM Trans. Math. Software 14 381–396

Introduction – f07 NAG C Library Manual

f07.16 (last) [NP3660/8]

	f07 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Notation
	2.2 Matrix Factorizations
	2.3 Solution of Systems of Equations
	2.4 Sensitivity and Error Analysis
	2.4.1 Normwise error bounds
	2.4.2 Estimating condition numbers
	2.4.3 Componentwise error bounds
	2.4.4 Iterative refinement of the solution

	2.5 Matrix Inversion
	2.6 Packed Storage
	2.7 Band and Tridiagonal Matrices
	2.8 Block Partitioned Algorithms

	3 Recommendations on Choice and Use of Available Functions
	3.1 Available Functions
	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Band storage
	3.3.4 Unit triangular matrices
	3.3.5 Real diagonal elements of complex matrices

	3.4 Argument Conventions
	3.4.1 Option arguments
	3.4.2 Problem dimensions

	3.5 Tables of Available Computational Functions

	4 Index
	5 Functions Withdrawn or Scheduled for Withdrawal
	6 References

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

